

City and water in local balance – Experience from Beijing and Copenhagen

Li Liu, Postdoc. Landscape architect, PhD Marina Bergen Jensen, Professor IGN-Section for Landscape Architecture and Planning University of Copenhagen <u>liu@ign.ku.dk</u>; <u>mbj@ign.ku.dk</u>

Urbanization – water stress

Figure 1 – Unbalanced urban water cycle

Groundwater level - Beijing

Flooding (water logging)

City & water in local balance (CWLB)

Close the urban water cycle locally – reduce the impact on the environment

Resilience – pluvial flooding avoided by controlled retention

Pure water – quality of water discharged comparable to that of the incoming water

Strong green infrastructure – linked with urban water management, providing multiple ecosystem services

Figure 2 – City and water in local balance

Conventional approach: Make the sewers larger

Sewerbased adaptation (hard & grey infrastructure)

New approach: Remove stormwater from sewers

Landscape based adaptation (soft & green infrastructure)

Synergy – how to make more of the investment

Method and cases

The distance to CWLB =

<u>Transferred water from beyond city limit + over exploitation of groundwater within city limit</u>

Total water supply

Cases:	Beijing (2009)	Copenhagen (2003
--------	----------------	------------------

Area (km²) 16,410 89.6

Population (persons) 19,720,000 501,664

Population density 1202 5599

(persons/km²)

Major water flows

lowering & contamination of groundwater table

Figure 4 –Beijing 2009. Unit: 10⁹ m³ (adapted from Liu et al., 2014)

- Limited available local natural water resource, most precipitation lost by evapotranspiration
- Groundwater abstraction exceeds infiltration
- Some water reuse
- Severe discharge of untreated wastewater

Figure 5 –Copenhagen 2003. Unit: 10⁶ m³ (adapted from Binning et al., 2006)

- Significant amount of stormwater running to sewers, heavy load for wastewater treatment plant
- All water transferred from outside city
- Insignificant water reuse

CWLB – the related factors

The related factors

- •Availability of local natural water resources (precipitation and river water)
- Water reuse ability
- Population density
- •Water use efficiency (average water consumption per capita)

- A1. Population density supported by local natual water resource
- A2. Population density supported by local natual water ressource plus water reuse
- A3. With improved water reuse technology in the future, but water use efficiency keeps unchanged, population density can be higher

Figure 3 – Sustainable population density depends on water resources and reuse skills

Maximum population density & the distance to CWLB

Table 1 - Maximum population density that natural water resources can support

	Beijing2009	Copenhagen2003	Beijing Scenario
Available local natural water resources*	2.03 (billion)	41.9 (million)	2.03 (billion)
Water consumption (m³/person/year)	180	65.4	100**
Support population (million)	11.3	0.641	20.3
City area (km²)	16410	89.6	16410
Support population density (persons/km²)	687	7150	1237
Actual population density (persons/km²)	1202	5599	

^{*} Assumption: Available local water resource is formed by precipitation in case area deducting evapotranspiration.

The distance to city & water in local balance

Figure 6 – The distance to CWLB, Beijing & Copenhagen

^{**} Average water consumption in European countries in the 1990s.

Discussion

- The size of a city
- People's behavior, technology and energy issue
- Data and scales of the two cities in comparison
- City form issues

- A1. Population density supported by local natual water resource
- A2. Population density supported by local natual water ressource plus water reuse
- A3. With improved water reuse technology in the future, but water use efficiency keeps unchanged, population density can be higher

Prospect

To what extend green infrastructure can contribute to city and water in balance?

How can we as urban planners and landscape architects facilitate the transformation of a city from unbalanced urban water cycle to city and water in local balance?

- •Close the urban water cycle locally
- Resilience
- Pure water
- •Strong green infrastructure

Unbalanced urban water cycle

City and water in local balance

Distance water transfer & unconventional water resource

Increase Water Resource

- ➤ Preserve 2 existing
 Wastewater reclaimed plant
- ➤ Update 8 existing WWTP
- Set up 5 Wastewater reclaimed plant

(Zhang, X.X., 2014)

The Strategic layout of unban flood control and drainage

Plan for "water smart use city"

Wetland

Storage ponds

filtration Pit

(Zhang, X.X., 2014)

Slide 17

Gravel Pit, Beijing – infiltration & retention basin

Copenhagen

- All drinking water are groundwater from surrounding regions
- Need simple treatment
- Groundwater table in some places decreased up to 10 m
- Only 2% water reuse (second water) in 2011, and planned to be 4% in2017
- Climate change brings further falling of groundwater table in the in-land regions

Climate Adaptation Plan 2011 – 30% more precipitation

Methods:

- 1. Larger sewers, underground basins and pumping stations;
- Manage rainwater locally instead of guiding it into the sewers;
- 3. Flooding takes place only where it does least damage a "plan b".

Copenhagen Cloudburst Plan 2012

Methods:

- 1.Service level 10 years retain period; Retrofitting city to hold 10cm flood for 100 years rain.
- 2.Efficient storage capacity and water ways, e.g. open channels on streets, retention reservoirs in parks.
- 3.Inner city large pipes underground draining water to ocean
- 4.For small rainfalls, keeping rainwater in the city for multifunctional uses

(Rambøll, 2014)

Implementation

- Cloudburst Implementation Plan
 for the next 20 years.
- 300 projects in 7 catchment areas. Political decision - Spring 2015.
- Prioritize areas: with high flooding risk, with easy implementation, with ongoing construction & with synergetic effects.
- Stakeholders: The property owners, the utility companies & the city Administration, because 1/3 of the areas are in private common road areas. Budget to make partnership in 2015.

FIGURE 3 // PRIORITISING ADAPTIVE MEASURES

The map shows the priority of measures in the water catchment areas of Copenhagen – at three levels according to risk, implementation, and synergistic effect with urban planning and development projects.

UNIVERSITY OF COPENHAGEN

Thank you!

Contect:

Dr. Li Liu
Department for Geosciences and Natural
Resource Management
University of Copenhagen

Email: liu@ign.ku.dk

