

Water Footprint Assessment

Analysing sustainability, efficiency, equity and security

Arjen Hoekstra www.ayhoekstra.nl

Cotton from the Aral Sea Basin, Central Asia

Humanity's unsustainable environmental footprint

Sustainability

resource use & emission caps

Efficiency

product benchmarks

Equity

fair shares by community

Resource security

some level of self-sufficiency

The water footprint of humanity: not sustainable

Blue water scarcity = blue WF / maximum sustainable blue WF

Source: Mekonnen & Hoekstra (2015)

We need water footprint caps per river basin (specified per month)

The water footprint of humanity: not efficient

Spatial differences in the consumptive water footprint of barley

Worldwide reduction of consumptive water footprints of crops to benchmark levels set by the best 25% of global production, would result in a global water saving of 40%.

The water efficiency of our food

Global average water footprint

	litre/kcal
starchy roots	0.5
cereals	0.5
sugar crops	0.7
pulses	1.1
vegetables	1.3
fruits	2.1
pork	2.2
poultry	3.0
beef	10.2

Source: Mekonnen & Hoekstra (2012) A global assessment of the water footprint of farm animal products, *Ecosystems*

The water efficiency of our food

The WF of meat & dairy is 30% of the overall WF of our food, in industrialized countries generally 40%

The water footprint of our choices

Stop showering = water saving of 50 litre/day

Stop eating meat = water saving of 800 litre/day

The two separate worlds of water and energy

- ► The water sector is becoming more energy-intensive
 - desalination
 - pumping deeper groundwater
 - large-scale (inter-basin) water transfers
- ► The energy sector is becoming more water-intensive
 - biomass
 - shale oil & gas

The water efficiency of biofuels

Source: Mekonnen & Hoekstra (2011)

The water efficiency of electricity

Source: Mekonnen, Gerbens-Leenes & Hoekstra (2015)

The water footprint of humanity: not fairly distributed

The water footprint of humanity: inter-regional dependencies

Example European Union

Source: Hoekstra & Mekonnen (2012) The Water Footprint of Humanity, PNAS

Global blue water footprint of UK consumption

Source: Hoekstra & Mekonnen (2015)

41% of UK's global blue WF is unsustainable (located in places where blue WF > max. sustainable blue WF)

51% of the unsustainable part of UK's blue WF is located in six countries:

- 1. Spain (15%)
- 2. USA (11%)
- 3. Pakistan (8%)
- 4. India (7%)
- 5. South Africa (6%)
- 6. Iran (5%)

- water footprint caps by river basin
- water footprint benchmarks by product
 - ▶ best available technology and practice
 - ▶ water disclosure
 - product transparency
- ► fair water footprint shares by consumer
 - ► national water footprint reduction targets
 - ► Kyoto protocol for water?
- ► greater levels of (water-food-energy) self-sufficiency

www.waterfootprint.org

Twitter @AYHoekstra www.ayhoekstra.nl